Materials Properties of Zirconia and Lithium Disilicate
1. Zirconia
When restoring a tooth, the clinician faces what material should be used for the restoration. The major factors that may influence the final choice are esthetics and strength of prostheses. Metal ceramics have been conventionally used as reliable materials. However, due to the request of esthetic dentistry, all ceramic prostheses are replacing metal based restorations more and more.
Zirconia has been used in prosthetic dentistry for the fabrication of crowns and fixed partial dentures for more than 15 years, in combination with CAD/CAM techniques. Zirconia (ZrO2), also named as “ceramic steel”, has optimum properties for dental use with superior toughness, strength, and fatigue resistance, in addition to excellent wear properties and biocompatibility. The introduction of zirconia based ceramics as restorative dental materials has generated considerable interest in the dental community. The mechanical properties of zirconia are the highest ever reported for any dental ceramic. This may allow the realization of fixed partial dentures and permit a substantial reduction in core thickness. These capabilities are highly attractive in prosthetic dentistry, where strength and esthetics are paramount.
Pure Zirconia
At ambient pressure, pure zirconia has three crystalline phases. At room temperature and upon heating up to 1170 degrees Celsius, the symmetry is monoclinic. The structure is tetragonal between 1170 and 2370 degrees Celsius and cubic above 2370 degrees Celsius. This transformation from the tetragonal (t) phase to monoclinic (m) phase upon cooling is accompanied by a substantial increase in volume about 4.5%, sufficient to lead to catastrophic failure. This transformation is reversible and begins at 950 degrees Celsius on cooling.
[Fig. 1] Electron micrograph of zirconia after sintering
Stabilized Zirconia
Zirconia used in dentistry has some stabilizers such as ceria, yttria, alumina, magnesia and calcia. This stabilizing oxide allows to retention of tetragonal structure at room temperature and the control of the stress induced t-m transformation, efficiently arresting crack propagation and leading to high toughness.
[Fig. 2] Transformation toughening
Transformation Toughness
The aspect resulting from transformation of the tetragonal phase to the monoclinic phase is transformation toughening. t-m transformation result in an increased strength and toughness of the material. This feature is beneficial for biomedical applications, where crack propagation is a crucial issue. Due to the metastability of tetragonal zirconia, stress generating surface treatments such as grinding and sandblasting is liable to trigger the t-m transformation with the associated volume increase leading to the formation of surface compressive stresses, thereby increasing the flexural strength but also altering the phase integrity of the material and increasing the susceptibility to aging.
[Table 1] Comparison of Flexural Strength
Aging – Low Temperature Degradation (LTD)
The low temperature degradation of zirconia is a well documented phenomenon, exacerbated notably by the presence of water. The consequences of this aging process are multiple and include surface degradation with grain pullout and microcracking as well as strength degradation.
During this aging process, the metastable tetragonal phase converts by a slow transformation into the stable monoclinic phase, starting at the surface in the presence of water at relatively low temperature. Aging starts by transforming a single grain at the surface via a stress induced mechanism. The transformation leads to the typical volume increase that induces stress in the neighboring grains and micro-cracks. This results in a large number of transformations, which increases the transformed zone. The micro crack offer a passage through that water can penetrate into the bulk and aging process continues to progress. Particle size reduction, increasing content of yttria and addition of alumina could be reduced the risk of LTD.
Grain Size
The mechanical properties of zirconia strongly depend on its grain size. Above a critical grain size, zirconia is less stable and more susceptible to spontaneous t-m transformation whereas smaller grain sizes (<1micron) are associated with a lower transformation rate. Moreover, below a certain grain size (~0.2micron), the transformation is not possible, leading to reduced fracture toughness. Consequently, the sintering conditions have a strong impact on both stability and mechanical properties of the final product as they dictate the grain size. Longer sintering time and higher sintering temperature lead to larger grain sizes.
Different Types of Zirconia
Traditional Zirconia has been doped 3mol% yttria to stabilize the tetragonal phase at room temperature. Compared to glass ceramics, zirconia in general has certain optical disadvantages due to its relatively high refractive index, which causes a high grade of total reflection. The refractive index changes depending on the orientation of the tetragonal crystals of the zirconia, which can cause birefringence. The high reflection leads to a mirror-like surface than that of natural teeth resulting in poor esthetics.
The other drawback of 3Y-TZP was its opacity. One source of opacity is the presence of alumina. Alumina is added as a sintering aid to help preventing the formation of pores when green state zirconia is placed in the furnace. Alumina grains lead to an enormous number of interfaces. This interfaces can decreases the light transmission when alumina added to zirconia. The alumina content was decreased from 0.25wt% to 0.05wt%. This 0.05wt% alumina containing 3Y-TZP is more translucent than that of 0.25wt%. It’s more susceptible to LTD because there is less alumina to stabilize the tetragonal phase. In addition, these poor esthetics make additional veneering with suitable porcelain materials. However, layering materials are not as strong as zirconia, and this may lead to chipping.
To overcome the disadvantages such as opacity and mirror-like surface, dental zirconia has been fabricated with increased yttria content recently. Zirconia doped with 8mol% yttria will completely stabilize the cubic phase, whereas zirconia doped with 5 mol% yttria creates partially stabilized zirconia (PSZ) with approximately 50% cubic phase zirconia. 5Y-TZP is sometimes referred to as 5Y-PSZ because it contains the cubic phase more than 50%. The cubic phase of zirconia is isotropic in different crystallographic directions, which decreases the light scattering that occurs at grain boundaries. As a result, the cubic zirconia appears more translucent. The translucency of 5Y-TZP is slightly less than that of lithium disilicate. In some clinical situations, the opacity of the material my help mask discolored substructures or cement.
Stabilized cubic zirconia does not transform at room temperature and therefore will not undergo low temperature degradation or transformation toughening. This means 5Y-TZP has lower fracture toughness than 3Y-TZP. Furthermore, the coefficient of thermal expansion decreases with increasing yttria content. Therefore, manipulation and crown preparation should be done carefully, avoiding thin walls and sharp edges as much as possible.
[Table 2] Material properties of different zirconia type
Chipping Between Zirconia and Porcelain
The interface between zirconia and porcelain may be involved on crazing and chipping during function. Chipping is defined as a typical failure of contact loadings, normally produced when a crack generated or propagated by contact loads deflects due to the presence of a free surface nearby. Tensile stress induces fracture of the brittle material perpendicular to the applied forces.
Thermal coefficient mismatches, processing and inherent material defects will increase the probability of crack propagation under loading.
In the case of metal ceramics, an adherent layer of oxide is essential to achieve a strong bond. This will enhance the wettability and adherence of the ceramic. When the temperature attains a certain level, part of this oxide will be dissolved into the glass.
On the other hand, the zirconia core-veneer bond strength is lower than metal ceramics. This can induce chipping and delaminating under loading. Framework surface treatment, the surface finish, the type and method of application of the veneer ceramic may affect this bonding. If bond failure has been pointed as chipping reason, differences in thermal coefficients, liner material and poor core wetting, veneer firing shrinkage, phase transformation, loading stresses, flaw formation, coloring pigments and surface properties have been reported as potential causes.
Zirconia presents a thermo-conductivity much lower than that of other framework materials. This low thermal conductivity retards the ceramic cooling rate at the interface. This generates thermal residual stress. It may induce thermal cycling delamination of the veneering porcelain. Prolonged cooling phases have been proposed to reduce this stress and veneer chipping. Slow cooling time ameliorated the resistance of the veneer restorations, and enhanced the shear bond strength.
Cohesive and adhesive failures of the veneering are recurrent complications of veneered zirconia framework. To counteract this tendency, the overpressing technique has been introduced. Press over zirconia (POZ) technique has a higher strength compared to the layering technique. Using of the pressed ceramic may reduce the chipping incidence, since the fabrication method would reduce the formation of large flaws and minimize the thermally induced residual stresses.
The pressed ceramic will be joined to the zirconia framework by fusion glass ceramic. Higher tensile strength and the superior quality of interface can prevent porcelain chipping. This material exhibits better fracture strength and fatigue behavior when compared to the layered ceramics. In one recent study, 3-unit posterior of POZ had significantly less fractures and chippings compared with layered one.
Wear of Opposing Enamel
One major concern with the use of monolithic zirconia as a restorative material is the abrasive nature against opposing enamel because of this material’s hardness and surface roughness. Several in vitro and in vivo studies were conducted to determine the wear of zirconia against different antagonists, including enamel, have shown zirconia to be comparable to other restorative materials in terms of wear of opposing enamel.
In vitro studies have shown that polished zirconia produces less wear on enamel antagonists than glazed zirconia and feldspathic porcelain crown. It can be explained by the fact that a polished zirconia surface procedures a quantifiably smother surface than the glazed zirconia, therefore proving to be less abrasive to the opposing enamel. Rougher surfaces have been correlated with increased wear of the opposing dentition. The result of in vivo studies demonstrates that polished monolithic zirconia does not cause accelerated wear of the opposing enamel. The wear of both metal ceramics and monolithic zirconia is comparable and that there are no significant differences between the enamel antagonists wear and control enamel wear of the two materials.
Annealing (Regeneration)
Annealing is the heat treatment procedure of zirconia to transform monoclinic phase to tetragonal phase after grinding because grinding induce t-m phase transformation on the surface of zirconia, especially 3Y-TZP. Monoclinic phase transformed by grinding and sandblasting can be returned to tetragonal phase by heat treating at 1000~1100℃ for 5~10 min. Some studies insisted heat treatment did not affect the flexural strength, and some other studies concluded the heat treatment process was helpful for m-t phase transformation. It seems the further study of regeneration firing is needed to prove the influence to property of zirconia.
Bonding to Zirconia
Glass ionomer cement (GIC) and resin based cements are the primary choices for bonding ceramic restorations to the remaining tooth structure. GIC and resin-modified GIC are often used to cement acid-resistant ceramics, mostly because these cements are very easy to use. However, the most popular and effective cements for all type of ceramic restorations are the resin based composites, including the systems containing the 10-methacryloxydecyl-dihydrogen-phosphate (MDP) monomer. The clinical success of resin bonding procedures for cementing ceramic restorations and repairing fractured ceramic restorations depends on the quality and durability of the bond.
[Table 3] Application of Zirconia
Application
As mentioned above, 5Y-TZP has lower fracture toughness and smaller amounts of tetragonal phase, leading to a reduced possibility of t-m transformation and therefore less transformation toughening compared to 3Y-TZP. Furthermore, the CTE decreases with increasing yttria content. It may lead to problems with veneering materials. But 5Y-TZP has better translucency.
3Y-TZP is suited for zirconia hybrid abutment and multi unit framework more than 3-unit bridges. Due to the reduction of fracture toughness and strength in 5Y-TZP, the indications are limited to full contour 3-unit bridges with higher wall thickness.
2. Lithium Disilicate (LS2)
Lithium disilicate dental ceramics is classified as a glass ceramic, subgroup of particle-filled glass, and contained approximately 70% of crystalline lithium disilicate filler. This material comes in two forms, an ingot used for pressable crown fabrication following the lost wax technique and a block that can be milled in a CAD/CAM system.
(a) Pressable (b) Millable
[Fig. 2] Microstructure of lithium disilicate
With the advent of digital dentistry and advances in computer aided design and manufacturing methods, the material comes prepared in “blue state”, where it is composed primarily of lithium meta-silicate, which is easier to mill and results in lower bur wear. After the milling process is completed, the material is heat treated and glazed in one step, forming the final lithium disilicate restoration.
Once milling has been completed the restoration is subjected to a second round of heat treating. The manufacturer considers the material fully crystallized after being tempered at 850℃ for 20~25min under a vacuum. Due to its esthetic nature, impressive mechanical properties and ease of use, blue block has seen increasing use over the several years.
(a) (b)
[Fig. 3] Blue state (a) and fully crystallization (b)
Material Properties
The material exhibits the flexural strength of 360 MPa and fracture toughness at 0.9~1.25 MPa·m1/2. The shear bond strength is 22.32±3.45 MPa. (table. 4) Restorations whose occlusal surfaces are comprised of ceramic are subject to wear, similar to natural enamel. Finishing the ceramic surfaces is essential to minimize antagonist abrasion, particularly in conjunction with milled restorations. To reduce the wear of enamel antagonists, ceramic surfaces should be finished according to the manufacturer’s directions even if the crown will be glazed later on. Glazing alone is not always an equivalent substitute for reworking the surfaces with fine diamonds or polishing of the basic material, because the underlying material will increasingly work on the antagonist either from the beginning or after some wear time.
[Table 4] Material properties of lithium disilicate
Lithium disilicate material addresses several shades and translucencies. This is available in the standard A through D shades and also includes a line of bleach shade. Besides coming in a wide variety of colors, this material is also available in five levels of translucency, high opacity (HO), medium opacity (MO), low translucency (LT), medium translucency (MT) and high translucency (HT). This variation is accomplished via differences in the microstructure of the material.
A fatigue studies found that 1mm thickness of material recommended by manufacturer might be exposed to a possible risk of complications when utilizing such a thin restoration. Also cyclic loading of monolithic veneers were highly susceptible to early failure rate. Some studies have reported that lithium disilicate crowns performed better than zirconia with fatigue testing.
Clinical Performance
The manufacturer and some studies have released recommendations and clinical guidelines to consider when utilizing the material. Initially lithium disilicate was recommended for use as an esthetic framework, an inlay and onlay material, as an anterior veneering material. In2016, the manufacturer released updated list of indications that lithium disilicate could be used as a veneering material, for inlays and onlays, full crowns, three-unit bridges for anterior and posterior region. However, some studies reported monolithic 3-unit bridge and 3-unit framework with veneering in posterior region were susceptible to failure at connectors.
Higher translucency will let more light into the restoration and if used in conjunction with a clear cement. In comparison with lithium disilicate and zirconia, the most translucent zirconia is about 70% as translucent as conventional lithium disilicate with same thickness. However, higher translucency is not always desirable. There are instances were ceramic materials with lower translucency are beneficial. Discolored teeth or teeth restored with grayish metal posts and cores require a ceramic material that can mask the underlying discoloration or metal core material. Relative opacity of zirconia is advantageous when masking is desired, but lithium disilicate has the potential to produce similar results when using medium opacity and high opacity material with veneering technique.
For lithium disilicate restorations, bonding with resin-based cement is recommended. The material is readily etchable and bonding the restoration to the supporting tooth structure will increase the strength of the crown.
Application
When choosing material of restoration, the properties of material should be considered for esthetic and functional prostheses. Because we do not have the perfect material that can be applied universally to all clinical situations, knowledge and clinical judgment must guide the clinician in the choice of material. The different results are often derived with same material in clinical situations.
Based on the studies and experimental results, here’s some recommendations of its applications related to choosing of all ceramic materials in table. 5.
[Table 5] Selection of all ceramic material
* Due to the fact that lithium disilicate core and veneering material showed chemical bond as they are porcelains with a similar composition, the bond strength between them is higher than those of zirconia.
** The milled lithium disilicate will be fused to zirconia substrate with crystal connect material.
3. Press Over Zirconia (POZ)
One of the specialized ways of using zirconia in dentistry is to fabricate zirconia frames upon which tooth-colored veneering ceramic is bonded. Layering technique and press technique are two widely used methods of securing ceramic onto zirconia frames.
Despite the growing use of zirconia some clinical studies are reporting veneering failure, namely chipping of the veneering porcelain as a major issue. The chipping of veneer is the most frequent reason for failure with a failure rate of 15.2% after an in-service time of about 36 months. Possible reasons for chipping are insufficient bond strength, excessive tensile stress due to a CTE mismatch, excessive load due to premature contacts, insufficient substrate support and tensile stress established during cooling after firing.
Chipping and fracture issues have also been reported with pressed veneering ceramics. A study compared the failure rate of PFM restorations with Y-TZP based ceramics both pressed and layered. According to this report, pressed ceramics have a lower failure rate than layered restoration after 2 years. This supports another study comparing pressed to layered veneering over zirconia and metal, where pressed ceramics performed significantly better.
Metal to porcelain integration of PFM crowns is apparently attained through both mechanical and chemical bonding. Mechanical bonding occurs because porcelain fills the irregularities in the metal surface. This is also called the interlocking effect. On the other hand, chemical bonding is the bond between oxygen atoms contained in the porcelain and an oxide film containing tin oxide and indium oxide on the metal frame’s surface.
However, there is no clear evidence demonstrating the presence of chemical bonding between zirconia and veneering ceramics. It is thus assumed that mechanical bonding plays the major role in the zirconia to porcelain integration of zirconia based restorations.
There is an international standard for the method of evaluating the bond strength between metal and porcelain using a bending test and PFM crowns in clinical use are required to have bond strength of 25MPa or more. There are many reports of using a shear bond test to evaluate the bond strength between metal and porcelain. Although there have not been many reports concerning the evaluation of zirconia to porcelain integration using international standard, all of those reported that the bond strength was 25MPa or more
However, bonding between zirconia and veneering materials is still in many respects a mystery, including the mechanism involved. There are some studies comparing the layering technique with the press technique. However, many reports argue that the dislodgement or fracture of veneered ceramics is more affected by frame design than differenced in techniques.
4. Conclusion
Material properties and applications of Zirconia, lithium disilicate has been looked over in this review. All material has their advantages and disadvantages, respectively. Zirconia has better fracture toughness and lithium disilicate has better esthetics. POZ might be the alternative using combination of virtue of zirconia and lithium disilicate. When choosing a type of restoration, it’s important that clinicians should carefully decide the material considering its properties and features to obtain the better aesthetic and functional results.